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IPCC 5th Assessment Report for Climate Change 2013:
The Physical Basis

Observed Changes in the Climate System

Warming of the climate system is unequivocal, and since the
1950s, many of the observed changes are unprecedented over
decades to millennia.

The atmosphere and ocean have warmed, the amounts of snow
and ice have diminished, sea level has risen, and the
concentrations of greenhouse gases have increased.
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Days vs. Nights
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Observed trends (days per decade) for 1951 to 2003 in the frequency
of extreme temperatures (defined based on 1961 to 1990 values)
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Days vs. Nights
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The number of cold days and nights has decreased and the number of
warm days and nights has increased on the global scale.

It is likely that the frequency of heat waves has increased in large parts
of Europe, Asia and Australia.
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Atmosphere - Precipitation

Observed change in precipitation over land
1901-2010 1951-2010
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Extremes

More land regions where the number of heavy precipitation events
has increased than where it has decreased.

The frequency or intensity of heavy precipitation events has likely
increased in North America and Europe.
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Melting Ice
RECORD LOW ARCTIC SEA ICE Arctic Sea lce
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Since 1979, the volume of Summer Arctic Sea
Ice has declined by 80% and is accelerating.

The first ice-free summer in the Arctic Ocean is
expected to happen between 2016 and 2022.

“The nine lowest maximum extents have occurred in the last nine
years, since 2004,” Meier says. NASA 2013



(c) Change in global average upper ocean heat content
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- Warming + Melting = Sea Level Rise
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A Figure 2.7: (a) A graph of recent sea level rise, measured from NASA's TOPEX and JASON
satellite Instruments, showing changes in sea level averaged over a 60-day period (blue line) and
From: Kitchen the overall trend (black line) of 3.1 millimeters per year (0.12 inches), Note the small decrease in sea
level between 2010 and 2012. This developed after unusually wet weather globally increased the
(2014) — Global amount of rainwater stored on land in rivers, lakes, reservoirs, and groundwater. This temporary
Climate Change decrease in sea level soon recovered as all the extra water made its way back slowly to the oceans.

(b) Launched in 1992, the TOPEX/POSEIDON satellite was the first mission to analyze sea surface
topography with precision. It has since been replaced by the JASON-2 satellite launched in 2008.



Solar radiation powers
the climate system.

Some solar radiation
is reflected by
the Earth and the
atmosphere.

About half the solar radiation
is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.
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The greenhouse effect: early discoveries

Edme Marriotte (1620-1684):

Sun’s heat passes through glass, other
#5348 heat does not (1681).

(www.nndb.com) '

Horace Béneédict de Saussure (1740-1799):

Air in mountains does not trap heat as much
as air in low-lying regions

(www.eoearth.org)
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Jean Baptiste Fourier
| AMLI\ICAN :

JOURNAL OF SCIENCE, &o.

Arr. L—General Remavles on the Tem.pera‘ture: .o;f the Tefr_est_rial
Globe and the Planetary Spaces; by Baron Fourier*

Translated from the French, by Mr. Esenezer BurcEess, of Amherst College. .

THEe question of terrestrial temperature, one of the.most remark-
able and difficult in natural-philosophy, involves very different ele-
ments which require to be considered in a general-light. "I have

"greenhouse effect". He writes: "The temperature [of the
Earth] can be augmented by the interposition of the
atmosphere, because heat in the state of light finds less
resistance in penetrating the air, than in re-passing into the
air when converted into non-luminous heat."



Optical properties of atmospheric gases

PHILOSOPHICAL MAGAYZ INE

// JOURNAL OF SCIENCE.
XXIIL On the Absorption and Radiation of Heat by Gases and
> Vapours, and on the Ph sical Connezion of Radiation, Absorp-

tion, and Conduction L The Bakerian Lecture. By Joun

TynpaLL Esq., F.R.S. &c.*

| Measured infrared radiation
B | absorption properties of atmospheric
1 molecules

S | Shanging H,O or CO, could cause
2 | “all the mutations of climate which
the researches of geologists reveal”

------

Nitrogen

Hydrogen . - L.

Carbonic oxide
Carbonic acid . .«
Nitrous oxide
Olefiant gas
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PHILOSOPHICAIL MAGAZINE

AND

JOURNAL OF SCIENCE.

-

[FIFTH SERIES.]

AP RIL 1896.

XXXI. On the [ nfluence of Carbonie Acid in the Air HpL

the Temperature of the Grouad, By Prof. SvaAsTE
ARRITEILY ",

40% 1 or U in CO, could explain advance & retreat
of glaciers. (2xCO, = AT ~4°C.) Human CO,
emissions could prevent another ice age.

Nobel Prize - Chemistry (1903)
o ). Geological Consequences.

[ should Leltaml\ not have undertaken these tedious calen-
lations if an utmurdmm interest had not been connected
with them. In the Phy sical Soci ety of Stockholm there have

been oceasionally very lively liscussions on the ]uulnl e
causes of the Ice \m-' and these discussions have, in my
upmlon led tothe wnnlmmn that there exists as yet no ~al|~1 1=

: gs that could explain how the climatic conditions

16
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THE ARTIFICIAL PRODUCTION OF CARBON DIOXIDE
AND ITS INFLUENCE ON TEMPERATURE

By G. S. CALLENDAR

(Steam technologist to the British Electrical and Allied Industries
Research Association.)

(Communicated by Dr. G. M. B. Dossox, F.R.S.)

In conclusion it may be said that the combustion of fossil fuel,
whether it be peat from the surface or oil from 10,000 feet below,
is likely to prove beneficial to mankind in several ways, besides the
provision of heat and power. For instance the above mentioned
small increases of mean temperature would be important at the
northern margin of cultivation, and the growth of favourably
situated plants is directly proportional to the carbon dioxide
pressure (Brown and Escombe, 1903). In any case the return of
the deadly glaciers should be delayed indefinitely.

As regards the reserves of fuel these would be sufficient to give
at least ten times as much carbon dioxide as there is in the air
at present.

Guy Stuart Callendar (1897-1964)

2xCO, = AT~ 2°C

Must treat atmosphere as set of interacting

layers, not a single

slab.

Speculated, with others, that AT over first part of
20t Century was anthropogenic.




Carbon and Other Biogeochemical Cycles
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National Research Council - GHG

Concentrations of Greenhouse Gases from 0 to 2005
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Analysis of air bubbles trapped in Antarctic ice cores show that, along with carbon dioxide,

atmospheric concentrations of methane (CH4) and nitrous oxide (N20) were relatively constant
until they started to rise in the Industrial era. Atmospheric concentration units indicate the
number of molecules of the greenhouse gas per million molecules of air for carbon dioxide and
nitrous oxide, and per billion molecules of air for methane. Source: U.S. Global Climate Research Prog
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Temperature and CO,
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ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/readme_petit1999.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/readme_petit1999.txt
http://www.ncdc.noaa.gov/paleo/icecore.html
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The Climate System

Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle

Changes in
Solar Inputs
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How do we simulate this?

(Mt/Ag/EnSc/EnSt 404/504 - Global Change) History (from IPCC WG-I, Chapter 1)




Schematic for Global
Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)
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How Well Have GCMs performed?

PUV-LOM 00T DO

Anthropogenic
and natural forcings

Figure TS.23. (a) Global mean surface
temperature anomalies relative to the period
1901 to 1950, as observed (black line) and
as obtained from simulations with both
anthropogenic and natural forcings. The thick
red curve shows the multi-model ensemble
mean and the thin lighter red curves show
the individual simulations. Vertical grey lines
indicate the timing of major volcanic events.
(b) As in (a), except that the simulated global
mean temperature anomalies are for natural
forcings only. The thick blue curve shows
the multi-model ensemble mean and the thin
lighter blue curves show individual simulations.
Each simulation was sampled so that coverage
corresponds to that of the observations.
{Figure 9.5}

Source: IPCC 2007a (WG I TSp.62)
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F u t ure (a) Global average surface temperature change
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RCP 8.5
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RCP2.6 RCP8.5

Northern Hemisphere September sea ice extent (average 2081-2100)

=== CMIP5 multi-model
average 1986-2005

[ ] CMIP5 multi-model
average 2081-2100

CMIPS subset
average 1986-2005

CMIP5 subset
average 2081-2100

IPCC - 2013



Global mean sea level rise
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1853-2012

#% Instituto Dom Luiz ~ EXTREMES

SCIENCE

comecriors EXTREME WEATHER & CLIMATE CHANGE

» Strongest Scientific Evidence Shows Human-Caused Climate
Change Is Increasing Heat Waves and Coastal Flooding

..4.‘, ~
[T e

MHE S

PRECIPITATION
L FLOODING WAVES

Limited { 3 Strongest
Evidence ' Evidence

©2012 Union of Concerned Scientists www.ucsusa.org/extremeweather
Source: Intergovernmental Panel on Climate Change SREX Report (2012)




young technicians
engineers of surveying and
geographical information technologies

play a major role

on monitoring and diagnosing the impacts of
climate change and support decision makers to
mitigate and adapt to climate change



Thank you!



2046-2065 2081-2100
Variable Scenario | mean likely range © mean fikely range ©
RCP26 | 10  04t016 10  03to17
Global Mean Surface
Temperature Change RCP4.5 14 09t 20 1.8 1.11t0 2.6
("C)* RCP60 | 13  08to1.8 2.2 14t03.1
RCP8S | 2.0 141026 37 26t04.8
mean likely range : mean likely range :
RCP26 | 024 01710032 0.40 02610 055
Global Mean Sea Level RCP45 0.26 0.19t0 0.33 047 0.32 to 0.63
Rise (m) ° RCPED | 025 0.18100.32 048 03310063
RCP85 | 030 0.22t00.38 0.63 04510 0.82
Scenario Cumulative CO, Emissions 2012-2100 (in GtC®)
Mean Range
RCP2 6 270 140 to 410
RCP4.5 780 595 to 1005
RCP6.0 1060 840 to 1250
RCP8.5 1685 1415 to 1910
Notes:

(a) 1 Gigatonne of carbon corresponds to 3.67 GICO,.

IPCC - 2013




Drivers of Climate Change
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Evaluation of Climate Models

Climate models have improved since the AR4. Models
reproduce observed continental-scale surface
temperature patterns and trends over many decades,
including the more rapid warming since the mid-20th
century and the cooling immediately following large
volcanic eruptions (very high confidence).



Mudanca Climatica Global

* A Terra esta em aquecimento:
— Como sabemos?
— O que sabemos?

* Razoes e incertezas quanto as causas da MC:
— O que é o sistema climatico?
— o efeito de estufa é um tema cientifico recente?
— O que é o efeito de estufa?
— Como simulamos o sistema climatico?
— Quais as projecgoes para o futuro?
— Donde vém os gases de estufa?



Global Climate Change

e Earth is Warming
 How do we know?
 What do we know?
 How confident are hypotheses about causes?
 What are greenhouse gases?
 Where do they come from, and how do we know?
* Most common claims of the skeptics
* T’s are going down, not up
* This warming is just part of a natural cycle
* CO, is good for plants



Temperature anomaly relative to 1861-1880 (°C)
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